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Abstract—The increasing integration of AI into computing
workflows demands a re-evaluation of traditional operating
system design. In environments like Debian, users are often faced
with a vast ecosystem of command-line tools, each accompa-
nied by extensive manual pages (man pages) detailing usage,
flags, and parameters. While comprehensive, these documents
are frequently dense, verbose, and not well-suited for rapid
onboarding or targeted queries. We propose a Retrieval Aug-
mented Generation (RAG) pipeline to bridge this gap, enabling
natural language interaction with system documentation. By
combining tokenization, embedding, and dense retrieval with a
language generation model, our system allows users to query
tool usage in plain language and receive concise, contextually
relevant responses. This approach streamlines tool discovery and
comprehension, and represents a step toward more intelligent,
user-aware operating systems.

I. INTRODUCTION

Despite their depth and comprehensiveness, Unix man pages
remain difficult to use for many. Their dense syntax and
writing style hinder users from quickly finding the right
command or flag. Not only that: man pages are most useful
when a user knows which tool will help them tackle a given
work; tools such as man -k or apropos don’t scale with
current systems’ complexity. This is particularly problematic
given the increasing number of system tools and utilities on a
modern Linux installation, as it is often evident when a new
user attempts to gain familiarity with their system. The Debian
project, a prominent posterchild of the Free Software world,
has been chosen to highlight this issue and to serve as a basis
for the project we present.

II. BACKGROUND AND RELATED WORK

Traditional Unix documentation tools such as man (collec-
tively known as man pages), apropos, and whatis rely
heavily on keyword matching and provide no semantic under-
standing of the user’s intent. While helpful for exact lookups,
they often fail for open-ended or goal-oriented queries.

There is a known cultural style to Unix documentation
man pages are known to be “telegraphic but complete. It
does not hold you by the hand, but it usually points in the
right direction. The style assumes an active reader. (...) Unix

programmers tend to be good at writing references, and most
Unix documentation has the flavor of a reference or aide
memoire (...) Read every word carefully, because whatever you
want to know will probably be there, or deducible from what’s
there” [1]. While this mindset has long been criticized [2],
Unix documentation continues to be written in a style focused
on each of options discussed, often disregarding a fuller view.

The Debian GNU/Linux distribution consists of over 59 000
binary (precompiled) software packages [3], and while several
tools for searching them [4], they all require the user to know
which package set will fulfill their needs; there is no simple
way to query an open “how can I...”-formed question. To
achieve this, we propose a combination of Large Language
Models (LLMs) as tools for data creation, document compre-
hension, relevant document retrieval, document classification
and finally text interpretation.

As we were working on the final details of this work, we
learnt the Red Hat Linux distribution, for its version 10 release,
includes a tool similar in spirit to what we are presenting,
named “Lightspeed” or “Command Line Assistant” [5]. The
service seems not to be provided for local use, but by querying
an on-line service [6]. Technical information regarding its
architecture, training data, and usage modes is still not widely
available, so while we feel obliged to refer to it, we cannot
yet include any comparisons between our implementation and
theirs.

III. RETRIEVAL AUGMENTED GENERATION

LLMs represent a significant advancement in Natural Lan-
guage Processing (NLP) given their proficiency in language
understanding and general knowledge. Some examples worth
mentioning are the GPT series [7], the LLaMA series [8],
and Gemini [9], among others. However, they are prone to
generating false or fabricated information [10], [11] and often
struggle with queries that require domain-specific knowledge
or up-to-date information [12], [13]. When questions extend
beyond the scope of their training they may fail to deliver
accurate responses, Retrieval Augmented Generation (RAG)
architectures offer a path forward. A RAG model combines a



retriever and a generator: the retriever fetches relevant docu-
ments from an external knowledge base, and the generator uses
these to produce informed, coherent responses. This allows the
model to access up-to-date or specialized knowledge beyond
its training data, improving factual accuracy and scalability in
tasks like question answering or summarization [14].

The diversity of techniques that can be subscribed under the
umbrella of RAG techniques can be roughly classified as [14]:

• Naive RAG: Employs off-the-shelf retrievers and genera-
tors without end-to-end training. The pipeline is straight-
forward but often suffers from suboptimal alignment
between retrieval and generation.

• Advanced RAG: Involves feedback loops, reranking, and
fine-tuned modules. Retrievers and generators may be co-
trained or jointly optimized to improve performance on
downstream tasks.

• Modular RAG: Emphasizes separation of concerns.
Components are independently replaceable, enabling flex-
ible deployment across domains. Modular RAG sup-
ports hybrid knowledge integration and task-specific cus-
tomization.

While encoder-decoder architectures excel in tasks that
require tightly coupled comprehension and generation, they
introduce computational overhead during retrieval due to their
cross-attention mechanism between the query and candidate
passages at inference time. In contrast, bi-encoder architec-
tures offer a more scalable and efficient alternative for retrieval
tasks by independently encoding queries and documents into
dense vector representations. This coupled with the ease
of comprehension-generation separation stages,[15] make the
RAG architecture easily adaptable. This work proposes a
modular RAG method setting in which the encoder models
are fine-tuned for retrieving relevant man pages necessary to
respond to a user query.

IV. SYSTEM ARCHITECTURE

A. Data description and preprocessing

The data used for this paper consists of man pages which
where used for training data creation, training and evaluation.
For this a full Debian mirror was used, that is, all binary
packages in the current unstable Debian distribution as of
early June, 2025, were downloaded and the contents of their
/usr/share/man/man1 directories were extracted. All of
the manual pages were converted from the troff sources to
regular text files, as flowed text is prefered for the approach
we are following over annotated text.

Readers will note we limit our work to the man1 directory,
that is, to the section 1 of the man pages, limiting the
knowledge ingested in our RAG to that of executable programs
or shell commands [16]. This decision was taken due to the
limits of the system we were able to do the training on; for
productive use, a GPU with larger memory should be used.
At the time of our sampling, the full /usr/share/man
directory contained 128 458 individual man pages (109 544
in English and the rest translated to other languages), and

the man1 subdirectory contained 34 579 files. The largest
manpage, for the Python package ezdxf, is 2.6MB long,
and the shortest one, for exiv2, is only 162 bytes long;
over 25 000 manpages (75% of them) are 5KB or shorter,
confirming Raymond’s characterization [1].

B. Synthetic training data generation

In the first stage of our pipeline, we generate synthetic
training data to fine-tune dense retrieval models [17]. We
begin by semantically chunking the man pages into coherent,
token-limited segments using sentence-aware splitting [18],
then uniformly sample 1% of the chunks. For each selected
chunk, also called document, we use GPT-4o-mini [19] to
generate a positive natural language query tailored to its
contents. These (query, document) pairs are then compiled
into a training dataset suitable for supervised fine-tuning of
bi-encoder models.

C. Encoder Fine-Tuning

For the second stage, four different dense encoder models
were downloaded from the HuggingFace service in a binary,
pre-trained format known as “checkpoint”, and were fine-tuned
based on our generated (query, document) pairs, creating
a shared embedding space. Fine-tuning is guided by a con-
trastive loss function. Given a batch of query embeddings
{q1, ..., qn} and corresponding document, or chunk, embed-
dings {d1, ..., dn}, the contrastive loss is defined as:

L = − 1

n

n∑
i=1

log

(
exp (qi · di/τ)∑n
j=1 exp (qi · dj/τ)

)
where τ is the temperature, which controlls the sharpness of

the similarity distribution. This formulation promotes high dot-
product similarity between true query-document pairs (qi, di)
while penalizing similarities to all other documents dj with
j ̸= i in the batch. Since the loss incorporates all possible
combinations of query and document embeddings within a
batch, it is crucial that each pair (qi, di) represents a meaning-
ful and relevant match. We ensure this by generating positive
pairs on the creation of the fine tune training data, where a
semantically aligned query is synthesized, thereby enforcing
that each training pair corresponds to a high-confidence pos-
itive example. This pairing strategy strengthens the learning
signal during contrastive training by avoiding ambiguous or
noisy alignments.

Embeddings are computed using mean pooling over the
token representations of each sequence. Model parameters are
optimized using the AdamW algorithm [20], which combines
Adam’s adaptive learning rate with decoupled weight decay for
improved generalization. Training is conducted over 50 epochs
with mini-batches, and all hyperparameters (e.g., learning rate,
batch size, maximum sequence length) are specified via a
structured configuration file. The resulting fine-tuned models
are stored locally and later used for dense retrieval.

This synthetic training approach enables the creation of
task-specific, scalable retrieval fo documents, or chunks, with-



TABLE I
SIZE OF THE RESULTING TRAINED MODELS AND VECTOR STORES

Model Trained model Vector store
T5-small 136M 860M
MiniLM-L6-v2 88M 701M
BGE-small-en 129M 701M
Multilingual-e5-small 470M 701M

out the need for manual annotation [17], and significantly
enhances the model’s ability to retrieve relevant passages.

D. Vector-store index

This step converts preprocessed documents into dense vec-
tor representations using the previously fine-tuned models
and stores them in a FAISS index [21] to enable efficient
semantic retrieval. Each document is encoded and the resulting
embeddings are pooled and indexed.

The system integrates the downloaded models described in
Subsection IV-C with LangChain’s FAISS wrapper, allowing
for scalable and configurable indexing. The result is a reusable
vector store ready for query-time retrieval.

The resulting training models and vector store sizes are
presented in Table I.

E. Document retrieval

Once the vector store has been populated, we perform an
automated dense retrieval of document chunks using a set of
queries synthetically generated that are of types positive, ab-
solute negative and mildly negative. Then we embedd batches
of queries into dense vectors and retrieve the top− k nearest
neighbors from the vector store based on L2 similarity.

F. Generation

In the final stage of the pipeline, we perform classification
and synthesis of the document chunks retrieved in response to
user queries. This step aims to filter out semantically irrelevant
content and generate concise, query-specific summaries that
can be consumed directly or used in downstream generation
tasks.

We begin by applying a zero-shot classification model
(facebook/bart-large-mnli) to each retrieved chunk, using the
query as contextual grounding. Given a query q and a doc-
ument chunk d, we evaluate whether the chunk answers the
query using the hypothesis template: ”This text answers the
question: ‘q’ – yes/no”. Chunks are retained only if the
classifier assigns the ”yes” label a confidence score greater
than 0.6. This filtering process allows us to isolate only the
most relevant results from the retriever step.

For each retained chunk, we then generate a natural lan-
guage synthesis using a pretrained summarization model
(facebook/bart-base). These summaries are constrained to
40–150 tokens and are designed to extract the core insight
or fact relevant to the original query.

The outcome of this step is a structured dataset containing
the query, the filtered classification label, and a synthesized
summary of the supporting evidence. This dual-stage process

of zero-shot filtering and abstractive summarization ensures
that the retrieved outputs are both accurate and information-
dense, significantly improving the quality and utility of the
RAG system’s final output.

V. ENCODER MODEL SELECTION

Retrieval Augmented Generation (RAG) critically depends
on the choice of encoder models, which must effectively and
efficiently map both queries and document chunks into a
shared semantic embedding space. In this section, we evaluate
four pre-trained models for dense retrieval, to be able to
compare their architectures, suitability for RAG pipelines, and
computational demands.

• google/t5-small [22]: Originally designed as an encoder-
decoder model for general-purpose text-to-text tasks, this
model is not optimized for embedding-only operations.
Although the encoder component can be repurposed for
retrieval, the overall architecture is less efficient for
embedding tasks in production settings.

• sentence-transformers/all-MiniLM-L6-v2 [23]: A
lightweight transformer fine-tuned for semantic textual
similarity tasks. It delivers fast, compact embeddings,
making it well-suited for latency-sensitive or resource-
constrained environments. However, it may show
limitations when dealing with specialized or technical
language.

• BAAI/bge-small-en [24]: A retrieval-focused encoder
pre-trained with instruction tuning to better capture
user intent. It exhibits strong performance on general-
purpose retrieval tasks and shows excellent alignment
with natural-language queries, making it particularly suit-
able for real-world knowledge retrieval.

• intfloat/multilingual-e5-small [25]: A multilingual bi-
encoder trained with contrastive learning objectives. Its
robustness in zero-shot settings and compatibility with
diverse linguistic inputs make it a strong candidate for
multilingual RAG applications.

Table II summarizes key characteristics of the models
considered, including their architectural type, number of pa-
rameters, encoder setup, and best-fit use case.

VI. EVALUATION

To assess the performance of the retrievers used in the
RAG pipeline, we need to distinguish between relevant and
irrelevant documents with respect to a given query, thus a
binary classification evaluation approach was used. For this,
we used the following:

Precision =
TP

TP + FP

Recall =
TP

TP + FN

Where TP means True Positives, FP means False Positives,
and FN means False Negatives.

Receiver Operating Characteristic (ROC) curves are used for
evaluation. These curves offer a threshold-independent view of



Model Architecture Params (M) Type Best Use
T5-small Encoder-Decoder 60.5 Seq2Seq Generation, Full RAG
MiniLM-L6-v2 Encoder-only 22.7 Bi-Encoder Local embedding
BGE-small-en Encoder-only 33.4 Bi-Encoder Query alignment
Multilingual-e5-small Encoder-only 118 Bi-Encoder Multilingual RAG

TABLE II
OVERVIEW OF MODEL ARCHITECTURES, PARAMETER SIZES, AND RECOMMENDED USE CASES. ALL PERFORMANCE METRICS WERE COLLECTED IN

INFERENCE MODE ON AN NVIDIA T4 GPU.

Fig. 1. Simulation results for the network.

the model’s discriminative capacity. For each retrieval model,
system outputs were matched with synthetic ground truth
labels on pairs man page–query. True positives were defined
as those documents labeled positive in the ground truth.
For a given retrieval model, documents were ranked according
to their L2 distance to the query embedding, and thresholding
was used to compute the trade-off between true positive and
false positive rates. This allows for the construction of ROC
curves, and the computation of the Area Under the Curve
(AUC) as a summary performance metric. The use of ROC
curves is justified by the nature of the evaluation task, which
involves finding the right chunks answering the user-provided
query.

Finally, the AUC score, which quantifies the overall ranking
quality of the retriever: a score of 1.0 indicates perfect ranking,
whereas a score of 0.5 reflects performance no better than
random selection, was used. This is particularly valuable in
early-stage evaluations, where threshold selection might be
arbitrary or application-dependent. Table III presents the AUC
scores obtained for the four fine tuned models.

TABLE III
AUC SCORES FOR DIFFERENT PRETRAINED MODELS ON THE RETRIEVAL

EVALUATION TASK

Model AUC Score
multilingual-e5-small 0.5883
t5-small 0.6722
all-MiniLM-L6-v2 0.6380
bge-small-en 0.5066

Among the tested models, t5-small achieved the high-
est AUC (0.6722), indicating relatively better discrimina-
tive performance in ranking relevant documents higher.
bge-small-en, on the other hand, performed close to
random (AUC = 0.5066), suggesting its inadequacy for this
specific retrieval task in its current form. These findings high-
light the importance of empirical evaluation when selecting
models for RAG pipelines, as performance varies significantly
across model architectures and training regimes.

VII. DISCUSSION

Our approach offers a significant usability improvement for
Unix documentation, but not without its trade-offs. While
semantic retrieval is powerful, it can miss low-frequency
technical edge cases. Further, generative models are prone to
hallucinating content if used for summarization.

The separation of the encoding stage allows the bi-encoder
to precompute and index document embeddings, enabling
fast approximate nearest-neighbor search during retrieval. Al-
though this architecture does not leverage joint attention be-
tween query and context at inference, its performance heavily
depends on the alignment quality of the learned embedding
space.

Fine-tuning the bi-encoder with synthetic (query, chunk)
pairs, as described above, directly optimizes this alignment.
The encoder learns to map semantically related queries and
passages to nearby points in the vector space, improving
retrieval accuracy. This makes bi-encoders particularly suitable
for RAG pipelines, where fast and accurate retrieval is a
prerequisite for high-quality downstream generation. Further-
more, the use of contrastive learning reinforces this alignment
by explicitly penalizing mismatched pairs, ensuring that the
embedding space reflects meaningful semantic structure even
without shared attention layers.

We have published the scripts used to download the man
pages, generate, train and query the model at https://github.
com/tzolkin-garduno/RAG man page; all models were down-
loaded from Huggingface (https://huggingface.co/).

VIII. FUTURE WORK

The implementation hereby described is all but an early
proof of concept. In particular, the decoder architecture is
to be fine tuned along with the bi-encoder component. We
suspect that the results obtained from fine tuning a coupled
bi-encoder and decoder architecture will yield better results,
yet this remains to be verified.

We plan to include the other relevant sections of the man
pages [16] (including multilingual content), improve chunk

https://github.com/tzolkin-garduno/RAG_man_page
https://github.com/tzolkin-garduno/RAG_man_page
https://huggingface.co/


linking for contextual navigation, and integrate with CLI
environments like Bash and Fish. We also envision a feedback
loop where user interactions help improve relevance over time.

IX. CONCLUSION

By bringing AI-driven retrieval to Unix documentation, we
attempt to make system tools more accessible and discov-
erable without compromising their technical accuracy. This
work demonstrates how traditional software ecosystems can
be modernized using NLP, benefiting both new users and
seasoned administrators.
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ACRONYMS USED

AUC Area Under the Curve
LLM Large Language Model
NLP Natural Language Processing
RAG Retrieval Augmented Generation
ROC Receiver Operating Characteristic
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